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Abstract. We derive a semiclassical quantization for a spin, study it for not too small a spin
quantum number (S > 5), and compute the 2S + 1 eigenvalues of a Hamiltonian exhibiting
resonant tunnelling as the magnetic field parallel to the anisotropy axis is increased. Special
attention is paid to the resonance condition. As a corollary we prove that semiclassical
quantization and quantum-mechanical perturbation theory agree there where they should.

1. Introduction

Resonance has revived the experimental interest in spin quantum tunnelling. The idea is
both fascinating and simple [1–4]. Each molecule in, e.g. a Mn12 acetate crystal carries a
spin of fixed angular momentum 10 ¯h and experiences a constant magnetic fieldH. The
corresponding Hamiltonian is given by

H = −γ S2
z − gµBH · S. (1)

The first term on the right is a magnetic anisotropy. Now letH = (α, 0, δ) and absorb
gµB into α andδ so that equation (1) reduces to

H = −[γ S2
z + δSz] − αSx ≡ −F(Sz)− αSx. (2)

Hereγ > 0 and we may assumeα, δ > 0. By puttingγ := −γ we encounter a situation
whose tunnelling physics and mathematics hardly changes and therefore need not be treated
separately. In this paper,Sx and Sz have the dimension of angular momentum, to be
measured in units ¯h. For the moment we suppose that the spin quantum numberS is an
integer.

The termαSx tries to generate a rotation about thex-axis and thus aims at inducing a
tunnelling transition. It certainly does so forδ = 0. For arbitrary nonzeroδ the degeneracy
in the spectrum ofS2

z is lifted and no tunnelling can occurunlessa special choice ofδ is
made that restores the degeneracy. Forα = 0 a degeneracy exists, ifF(mh̄) = F(nh̄) for
some integersm andn, i.e. puttingγ h̄ = 0,

�(0)m ≡ −m20 −mδ = −n20 − nδ ≡ �(0)n . (3)

In passing we note that both0 andδ have the dimension of frequency. Equation (3) tells
us

(m2− n2)0 + (m− n)δ = 0 (4)

∗ Dedicated to Heinz Horner on the occasion of his 60th birthday.
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so that with−S 6 m 6= n 6 S we are left with

(m+ n)0 + δ = 0⇒ m+ n = −δ/0 = −k (5)

where k > 1 is chosen to be a positive integer. Hencem = −n − k. The remarkable
aspect of this condition is that it can be realized forall n in the ballpark−S 6 n 6 S − k.
Furthermore, degeneracy can be realized by a single choice, namely,δ = k0. Here one has
exploited the fact that the anisotropy isquadratic in Sz. The variable parameterδ is at the
disposal of the experimentalist and the corresponding magnetic field is usually increased
from minus to plus a few tesla. One then finds [1–4] several resonances inbetween. It is fair
to say that the above set-up is indeed elegant. It is a corollary of semiclassical quantization,
as treated in this paper, that the resonance condition (5) also holds forα 6= 0. The (tiny)
level splitting is a consequence of quantum mechanics.

Meanwhile resonance has been studied intensively. Those who invented it already
initiated a first attempt [1] at its theoretical understanding. In an admirable tour de force,
Chudnovsky and Garanin [5, 6] were able to fully analyse the influence of the heat bath
provided by the surroundings of the spins on the tunnelling process ifδ = 0, and there is little
doubt that their arguments can be generalized to theδ 6= 0 case. Here we assume a much
lower temperature so that the heat bath can be neglected. The analysis of semiclassical
quantization, including resonance, is the main theme of this paper. It yields the energy
eigenvalues of the Hamiltonian (2) to a good approximation and thus completes our earlier
work [7–9] on the Wentzel, Kramers and Brillouin (WKB) formalism for spins; we refer
the reader to the excellent review [10] for additional information regarding the experimental
and theoretical context. In section 2 we reconsider the WKB formalism and indicate the
use of the WKB wavefunctions in computing the level splitting at resonance. We then treat
semiclassical spin quantization (section 3) and determine (section 4) the energy eigenvalues
for arbitrary external field, i.e.δ. In section 5 we extend the results to half-integer spin
quantum numbers and Hamiltonians in which the termαSx is replaced byαSlx with l > 1.
The conclusion is that semiclassical quantization holds here too, but that for evenl the
condition (3) may correspond to true degeneracy; that is, no resonance and no tunnelling.
We end the paper with a discussion (section 6).

2. WKB and resonance

The eigenvalues and eigenvectors of the Hamiltonian (2) are solutions of the eigenvalue
equationHψ = Eψ . TheSz axis being the main anisotropy axis, it is natural to write this
equation in a representation withSz diagonal. ThenSz is simply s = nh̄, a multiplication
operator on the spectrum ofSz. Furthermore, letT±h̄ induce a translation by±h̄ so that
(T±h̄ψ)(s) = ψ(s ± h̄). ThenSx reads

Sx = 1
2(S+ + S−) = 1

2

[
a
(√
s(s + h̄)

)
Th̄ + a

(√
s(s − h̄)

)
T−h̄

]
(6)

wherea(s) = [σ(σ + h̄)− s2]1/2. As a consequence, the Schrödinger equation assumes the
form of a second-order difference equation,

hn,n−1ψn−1+ hn,n+1ψn+1+ (hnn − E)ψn = 0. (7)

The matrix elements and the vector components are taken in the basis of the eigenvectors
of Sz, and (7) is valid for−S + 16 n 6 S − 1. Disregarding the remaining two equations,
relation (7) has two linearly independent solutions forany value ofE; they are determined
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by fixing, e.g.ψ0 andψ1. The 2S + 1 eigenvalues ofH are singled out by requiring that
ψ satisfy the boundary conditions

h±S,±(S−1)ψ±(S−1) + (h±S,±S − E)ψ±S = 0. (8)

Equivalently, we can extend (7) ton = ±S by defining arbitrary realh±S,±(S+1) = h±(S+1),±S
and imposing the boundary conditionsψ±(S+1) = 0.

If α = 0, the eigenvectors are those ofSz and the eigenvalues equal ¯h�(0)n with n ranging
from −S to S; cf equation (3). It is interesting to note that, unless degeneracy (3) occurs,
with increasing energy the eigenvectors are alternately localized on the ‘right’ (n > 0) or
on the ‘left’ (n < 0). Far from degeneracy an approximate localization on alternating sides
remains true for a nonvanishingα, if α � 0S+ δ, which is supposed throughout the paper.

By varying δ, neighbouring eigenvalues can get very close to each other, although
true degeneracy cannot occur [11]. As we discuss below, the mechanism of the avoided
level crossing is spin tunnelling. When two eigenvalues become as close as possible, we
speak of aquantum-mechanical resonance. This has to be distinguished from what we
call a semiclassical resonance, which we understand to be the coincidence of semiclassical
eigenvalues. We shall prove in section 4 that the condition for a semiclassical resonance
remains (3). Apart from the resonance atδ = 0, we cannot expect that the two definitions
predict the same ‘resonant’ values forδ. Because, however, semiclassical eigenvalues nicely
approximate the true ones, only a small ‘fine tuning’ ofδ may be necessary to pass from
semiclassical to true, quantum-mechanical, resonance. In the remaining part of this section
we explain how one can estimate the level splitting at resonance.

Let us chooseδ close to a resonant value and letE1 < E2 be two (unknown)
neighbouring, nearly degenerate, eigenvalues. Let us also imagine that we are given two
linearly independent vectorsη(E)n andϑ(E)n which depend continuously onE and solve
(7). To avoid all confusion, we emphasize that no linear combination of them satisfies the
boundary conditions (8) and, hence, the eigenvalue equation, ifE is not an eigenvalue.
On the other hand, the eigenvector belonging toE1 is a linear combination ofη(E1) and
ϑ(E1), and its analogue holds forE2. Let E(sc)

1 andE(sc)
2 be the semiclassical eigenvalues

corresponding toE1 andE2, respectively. Because all four energies are now close to each
other, we can replaceη(E1) andη(E2) by η(E(sc)

1 ), andϑ(E1) andϑ(E2) by ϑ(E(sc)
2 ), or

vice versa. In this way, findingE1 andE2 and the corresponding eigenvectors reduces to
good approximation to diagonalizingH in a two-dimensional subspace. In so doing, we
can use the WKB method to obtainη(E) andϑ(E).

Though WKB never considered spins, their idea is also applicable here, provided one
generalizes the formalism appropriately [7–9] so as to take care of the discrete nature of a
spin and its different commutation relations, as compared with a particle. A semiclassical
analysis formally means that we take the limit ¯h→ 0 and at the same timeS →∞ in such
a way thath̄S = σ remains constant. In this limit we are left with a continuum description
with s ranging in the interval [−σ, σ ]. In the spirit of WKB we now make the ansatz
ψ = exp(iS/h̄) with

S = S0+
∞∑
n=1

(
h̄

i

)n
Sn (9)

for the wavefunction we are looking for, expand everything in powers of ¯h, and usually
stop after the first-order term, the zeroth-order one being dominant. Sode factowe use a
continuum description, even though ¯h is still finite.

The dominant contribution to tunnelling comes from the classically forbidden region,
say, between the inner turning pointsb1 < b2. In this interval the two linearly independent
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Figure 1. Classical orbits of the HamiltonianH = −γ S2
z − δSz − αSx are the intersection(s) of

the energy surfaceE = −γ S2
z − δSz − αSx and the sphereS2

x + S2
y + S2

z = σ 2, here plotted for
S = 20, h̄ = α = γ = 1, δ = 10, andE = −50.

WKB wavefunctions read [7–9]

φE,l(s) = Cl exp−1

h̄

∫ s

b1

ds ′ arccosh

(−E − F(s ′)
αa(s ′)

)
(10)

and

φE,r (s) = Cr exp−1

h̄

∫ b2

s

ds ′ arccosh

(−E − F(s ′)
αa(s ′)

)
. (11)

HereCl,r are normalization constants and the arccosh expression stems fromS0 in (9). As
can be seen from figures 1 and 2, there are four turning points on thes := Sz axis, two
inner ones,b1 andb2, and two outer ones,a1 anda2. The inner turning points,b1 andb2,
are boundaries of the classically allowed motion to the left and right of them, respectively,
such that here the argument of the hyperbolic cosine equals 1. The functions depend
continuously on the (classical) energyE. By using appropriate connection formulae, both
can be extended to the whole interval [−σ, σ ], and the functions obtained in this way are
almost perfectly localized on the left and on the right, respectively. Indeed, betweenb1 and
b2 equations (10) and (11) define, respectively, a rapidly decaying and a rapidly increasing
function. Localization of the extended solutions then follows fromφE,l(b1)� φE,l(b2) and
φE,r (b1) � φE,r (b2). For later use we note that the two functions are not orthogonal to
each other and, because of the localization, their tiny overlap comes essentially from the
classically forbidden region.

If we restrictφE,l(s) andφE,r (s) to the discrete valuess = nh̄ with integern between
−S andS, we obtain the two vectorsη(E) andϑ(E). Our earlier discussion shows that,
if E happens to be an eigenvalue far enough from other eigenenergies, thenφE,l or φE,r
alone is a good approximation of the corresponding eigenvector. Returning to the problem
of resonance, we can findE1 andE2 by diagonalizingH in the subspace spanned by, say,
φ
E
(sc)
1 ,l

andφ
E
(sc)
2 ,r

. Close to the semiclassical resonance (3) there exist integersm < 0< n

such that these functions are localized nearmh̄ and nh̄, respectively. We shall use the
shorthandφm andφn for them. Letχ denote the matrix ofH so thatχij = 〈φi |H|φj 〉, and
let o be the overlap matrix with elementsoij = 〈φi |φj 〉, wherei, j ∈ {m, n}. We recall that
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Figure 2. The effective, quartic double-well potentialU(s) given by equation (21) has been
plotted for h̄ = α = γ = 1, δ = 10, andE = −56.7. For S = 20, E = E−14 = E4; that is,
the levels−14 and 4 are at resonance. The two horizontal segments are located at the ‘energy’
level E = (S2−E2)/2. They end up in the turning points, which limit the classical motion.U ′′
is about 1% bigger in the minimum on the right than in the minimum on the left.

omn is nonvanishing, although very small; we shall estimate it below. There is no harm in
supposingφm andφn to be normalized.

We now turn to an explicit calculation of the quantum-mechanical level splitting. To a
good approximation [7–9],E1 andE2 agree with the eigenvaluesE− andE+ of the 2× 2
matrix

o−1χ = 1

1− o2
mn

(
χmm − χmnomn χmn − χnnomn
χmn − χmmomn χnn − χmnomn

)
. (12)

Namely, expand the eigenfunctions in terms ofφm andφn and take matrix elements. For
the eigenvalues we find

E± = 1

2(1− o2
mn)

(χmm + χnn − 2χmnomn ±D) (13)

where

D = [(χmm − χnn)2+ 4(χmn − χmmomn)(χmn − χnnomn)]1/2. (14)

Let (x±, y±) denote the eigenvectors ofo−1χ corresponding toE±. That is, the approximate
eigenvectors ofH arex±φm + y±φn. For r± = x±/y± an elementary computation yields

r2
± =

χnn − E±
χmm − E± (15)

and, by orthogonality,r+r− = −1− (r+ + r−)omn. Near resonance equations (13) and (15)
provide improved eigenvalues and eigenvectors as compared with the semiclassical ones.
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We now have to tuneδ to quantum-mechanical resonance. Supposingχmn is of the order
of the overlap, the second term under the square root in (14) is of ordero2

mn. The overlap
is a smooth function ofδ and remains uniformly small in the small region where we varyδ.
So the minimal distance betweenE+ andE− is reached when1mn = χmm − χnn vanishes
(or is also of orderomn). Thus we conclude that the quantum-mechanical level splitting is
of orderomn. The order of magnitude ofomn is easily inferred from equations (10), (11).
For this estimate we may supposeE = E(sc)

1 = E(sc)
2 . Then

omn = C exp−1

h̄

∫ b2

b1

ds arccosh

(−E − F(s)
αa(s)

)
(16)

whereC is a constant of order 1. The exponential factor inomn can be interpreted as a
transition probability. This suggests to write the level splitting1E = E+ −E− in the form

1E = πh̄

τ0
exp−1

h̄

∫ b2

b1

ds arccosh

(−E − F(s)
αa(s)

)
(17)

where 1/τ0 is an attempt frequency. Recalling the expression of the hyperbolic cosine in
terms of a natural logarithm and usingb1 ≈ mh̄ andb2 ≈ nh̄, we find the order-of-magnitude
estimate

1E = πh̄

τ0

[
αS

0(m2+ n2)+ δ(m+ n)
]n−m

. (18)

By identifying τ0 with the time period of the classical motion—see equation (22) below—
equations (17) and (18) become fully explicit. Forδ0 and n = −m = S they agree,
respectively, with formulae (C.11) and (C.12) in appendix C of our earlier work [8]. In that
case (17) leads to a remarkably precise result, as can be seen in table 1 of [8]. Equation (17)
was also obtained [9] by an independent argument.

Of courseδ can be chosen to let1mn vanish. The reason is thatχmm ≈ E
(sc)
1 and

χnn ≈ E
(sc)
2 (the small deviation coming from the fact thatφm and φn do not satisfy the

boundary conditions (8)), andsemiclassicaleigenvalues do cross each other at resonance.
Thus1mn = 0 for aδ close to−(m+n)0. In particular, because of a reflexion symmetry of
the Hamiltonian, the level pairs{m = −n, n} are at semiclassicaland quantum-mechanical
resonance, onceδ = 0.

The origin of the level splitting is spin tunnelling. At quantum-mechanical resonance
|r±| = 1 and thus the approximate eigenfunctions areψ± = (φm ± φn)/

√
2. If we start

on the left, we takeφm = (ψ+ + ψ−)/
√

2. This state evolves under the influence of the
dynamical evolution generated by exp(itH/h̄). After a time T given by equation (17)
throughT1E = πh̄, the system is inφn = (ψ+ − ψ−)/

√
2, i.e. on the right. All this

is exactly as in the case with a reflection symmetrySz ↔ −Sz such as whenδ = 0.
In the corresponding classical problem an approximate reflection symmetry survives for
remarkably high values ofδ (δ 6 100) with a shifted center of symmetry; cf figure 2.
Because of this approximate symmetry and for low enough energies, the attempt frequencies
in the two, now different, orbits centred atm andn are hardly different; see equation (22)
below. This fact is crucial for the interpretation ofτ0 in the level splitting formula (17).

3. Semiclassical quantization

Semiclassical quantization of a single spin can be handled straightforwardly since we always
find closed orbits—if any—as the intersection of the energy surfaceH = −[γ S2

z + δSz] −
αSx ≡ E and the sphereS2 = S2

x + S2
y + S2

z ≡ σ 2; cf figure 1. Here the classical
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equations of motion associated with the HamiltonianH = −F(Sz) − αSx can be reduced
to a second-order differential equation [12] forSz,

S̈z = −F(Sz)F ′(Sz)− EF ′(Sz)− α2Sz = − d

ds
U(s)

∣∣∣∣
s=Sz

(19)

where

U(s) = 1
2F

2(s)+ EF(s)+ 1
2α

2s2. (20)

In this case,F(s) = γ s2+ δs so that

U(s) = 1
2γ

2s4+ γ δs3+ [γE + 1
2(α

2+ δ2)]s2+ δEs. (21)

Equation (19) describes the motion of a unit ‘mass’ with coordinates = Sz in a ‘potential’
U(s) so that its ‘energy’E = 1

2 ṡ
2+ U(s) is conserved. The true dimension ofE , which is

calledε in [8], is (energy)2. In principle, we fixE by specifyings(0) and ṡ(0). In practice
[8, section 2.2] there are only two independent constants of the three-dimensional motion
of a spin, namely, the energyE andS2 = σ 2, so thatE is bound to be a function of both
of them: E = 1

2(α
2σ 2−E2). This is most easily verified by using (20), computingE2, and

realizing thatE = −F(s)− αSx while ṡ = −αSy .
ForE negative enough,U is a double-well potential, which is asymmetric ins for δ 6= 0

and we have two disjoint closed orbits, as is brought out by figures 1 and 2. Figure 2 shows
that the asymmetry develops much more slowly than the shift of the maximum; this latter
is roughly at−δ/2. The turning pointsa1 < b1 < b2 < a2 are solutions of the equation
U(s) = E . GivenE, classically allowed motion is betweenai and bi , with i = 1, 2, so
either on the left or on the right. The period of this motion and, thus, implicitly the attempt
frequency is

Ti(E) =
∣∣∣∣2∫ bi

ai

ds[2(E − U(s))]−1/2

∣∣∣∣. (22)

If E is close enough to the bottom of the potential well,U(s) is nearly parabolic in the
domain of integration of (22) andTi(E) ≈ 2π/

√
U ′′(si), wheres1 ands2 are the locations

of the minima. BecauseU(s) is independent of the spin quantum numberS, the attempt
frequency will also be (nearly) independent ofS.

Once an orbit exists, anyE is classically acceptable. Quantum mechanically, however,
only 2S + 1 energy eigenvalues survive. Determining the allowed eigenvalues to fair
approximation and in closed form is what semiclassical quantization is (or should be) good
for.

Handling a single spin, we have only a single pair of canonically conjugate variablesq

andp, which are related through the Poisson bracket{q, p} = 1. Since in a Hamiltonian
formalismq andp are handled on an equal footing there is no harm in interchanging them
by putting qnew := −p and pnew := q so that the new variables have the same Poisson
bracket{qnew, pnew} = 1 as the old ones. Instead of declaringq = Sz andp = −φ to be
canonical coordinates [7–9], withφ as the azimuth, we now find it advantageous to put

q = φ and p = Sz. (23)

Semiclassical quantization is a condition on the action integral,∮
p dq =

∮
Sz dφ = nh n ∈ Z (24)

where the integral is to be taken over a classical, closed orbit,h is Planck’s constant, and
n is an integer; cf Messiah [13]. Along a closed orbitSz can often, certainly in this case,
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be specified as a function of 06 φ 6 2π ; cf figure 1. We writeSz = σ cosθ , with θ as
the polar angle, and arrive at the condition which we will use in the spin problem below,

σ 〈cosθ〉 ≡ σ

2π

∮
dφ cosθ = nh̄ n ∈ Z. (25)

Of course cosθ is to be given as a function ofφ. The fact thatn is a positiveor
negativeinteger, restricted to|n| 6 S, is typical to spins.

To verify that all this makes sense, we take the limitα → 0 so that the paraboloid
−[γ S2

z + δSz] − αSx ≡ E becomes very steep and, consequently,Sz in (24) is more or
less constant as the spin tracks its orbit. Hence we find 2πSz = nh, which is equivalent to
sayingSz = nh̄, as should be the case on the spectrum ofSz.

As an application of the semiclassical quantization condition (25) we study the
Hamiltonian (2) with vanishingδ. The energy as given in polar coordinates,

E = −γ S2
z − αSx = −γ σ 2 cos2 θ − ασ sinθ cosφ (26)

leads to a quadratic equation fory := x2 with x = cosθ ; this only happens whenδ = 0.
Here we assumeE < 0, which is typical to tunnelling. In view of considerations to come
in section 4, we introduce the dimensionless parameters

a = α

2γ σ
Q2 = − E

γσ 2
and ε = a cosφ

Q2
. (27)

Herea is supposed to be small; in the Mn12 case,a = 0.3.
The quantityy obeys the equationy2− 2Q2(1− 2ε2Q2)y + (1− 4ε2)Q4 = 0 so that

y± = Q2{(1− 2ε2Q2)± 2ε[1−Q2+ ε2Q4]1/2} > 0. (28)

In view of y−(φ) = y+(φ + π), it suffices to considery+ and, thus,

x± = ±Q{(1− 2ε2Q2)+ 2ε[1−Q2+ ε2Q4]1/2}1/2 ≡ ±Qf (Q, ε). (29)

That is, we are left with a ‘positive’ branch,x+(φ), and a ‘negative’ one,x−(φ),
symmetrically positioned with respect to theSx–Sy plane. Bothx+ and x− have to be
inserted into (25). They correspond ton > 0 andn < 0, respectively, and yield the same
energy. Indeed, (25) and (29) imply(n

S

)2
= Q2〈f 〉2. (30)

As a matter of fact,f is a function ofQ2 so that the solution of (30) forE only depends
on |n|. It then remains to calculate the quantum-mechanical splitting of the levels−n and
n as indicated in section 2.

In this case, semiclassical quantization is a straightforward integration giving up to
second order ina (see appendix A)

〈cosθ〉 = 1

2π

∫ 2π

0
dφx±(φ) = ±Q

[
1− a

2

4
(Q−2+Q−4)

]
= nh̄

σ
= n

S
. (31)

The dependence ofx±(φ) on φ is a dependence upon cosφ. If desired, one can change
variables throughz := exp(iφ) and obtain a contour integral in the complexz plane.

What we are after is the energyE as it appears inQ. First we solve (31), a fourth-order
equation inQ. Recalling that it already contains an error term of the order ofa4, it suffices
to find Q = Q(a) up to second order, which can be done by iteration. To this end we
rewrite (31) in a form that is easy to iterate,

Q = |n|
S
+ a

2

4
(Q−1+Q−3). (32)
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Iterating once, i.e. replacingQ in the right-hand side of (32) by|n|/S, we obtainQ up to
second order ina:

Q = |n|
S

{
1+ a

2

4

(
S

n

)2
[

1+
(
S

n

)2
]}

. (33)

BecauseE = −γ σ 2Q2, squaring (33) and dropping terms of ordera4 we obtain the second-
order expression for the frequencies (|n| 6 S),

�n ≡ En/h̄ = −n20 − α2

80

[
1+

(
S

n

)2
]
. (34)

Here, and in the next section, we have dropped the superscript ‘sc’, andEn denotes a
semiclassical eigenvalue. As announced, the degeneracy ofEn andE−n is not lifted. It
has to be borne in mind that (34) has been obtained under the assumption that we may
drop everything beyond second order ina2, an assumption that may, but need not, hold. In
appendix A we derive an exact expression of〈cosθ〉 in terms of a power series ina. Using
this power series one can obtain semiclassical energies up to any order.

As equation (34) is second-order ina, it is instructive to compare it with second-order
quantum-mechanical perturbation theory [14],

E(2)n /h̄ = −n20 − α2

80

[
n2+ S(S + 1)

n2− 1/4

]
. (35)

The correction to−n20 is slightly bigger in absolute value than in (34) but the agreement
is excellent, except for, say,|n| 6 2 and S 6 4. For the ground state with|n| = S,
equation (34) yieldsE±S = −γ σ 2−α2/4γ which agrees with the minimal classical energy,
cf [8, equation (2.6)]. Table 1 of [8] shows that, forα = γ = h̄ = 1 andS > 8, the ground
state has�S + S20 = −0.26, which is indeed near the predicted− 1

4. In fact, it is slightly
less, as we would expect. Under the provisoS > 5 and|n| > 3, the deviation of the ‘shift’
E(2)n /h̄+ n20 from that given by numerically exact eigenvaluesEn is less than 15%.

4. Determining the energies for nonzeroδ

We proceed in analogy to theδ = 0 case. In the argument below we are looking for
solutions of a fourth-order equationP4(x) = 0 in dependence upon a given combinationa
of the coefficients of the polynomialP4. Instead of attempting to obtain an exact solution,
which would not provide much insight, we rewriteP4(x) = 0 in the form of a fixed-point
equationx = f (x, a), and, supposing the smallness ofa, find the solutionx = x(a) by
iteration, up to a given order ina. We have already applied this procedure once, namely,
to (32).

The energy as given in polar coordinates and to be compared with (26) reads

E = −γ S2
z − δSz − αSx = −γ σ 2 cos2 θ − δσ cosθ − ασ sinθ cosφ. (36)

As before, we putx = cosθ but do not get a quadratic equation iny := x2 onceδ 6= 0,

γ σ 2x2+ δσx + ασ
√

1− x2 cosφ + E = 0. (37)

In agreement with (27) we now define the dimensionless quantities

a = α

2γ σ
d = δ

2γ σ
Q2 = − E

γσ 2
+ d2 ε = a cosφ

Q2
(38)

which reduce to (27) wheneverδ = 0. Here too,E < 0 will be assumed.
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The two solutionsx = x± of (37) obey the equation

x = −d ±Q(1− 2ε
√

1− x2)1/2. (39)

According to what has been outlined at the beginning of this section, we assumeε < 1
2 so

that the outer square root can be expanded. Then (39) can be solved by iteration to any
order ina. The algebra has been relegated to appendix B. After an integration with respect
to φ one finds, to second order ina,

〈x〉 ≡ 1

2π

∫ 2π

0
dφ x(φ) = x0+ a2

2Q4
[x]2 (40)

wherex0 = −d ±Q and

[x]2 = ∓Q
[
±Qx0+ 1

2
(1− x2

0)

]
= ∓Q

2
(Q2+ 1− d2). (41)

Unless stated otherwise, we will not repeat that henceforth we have to add a termO(a4) to
all right-hand sides of the equations in this section.

Semiclassical quantization means, in complete analogy to (31), that〈x〉 is to be equal
to n/S with −S 6 n 6 S. Realizing thatn > 0 corresponds to the upper andn < 0 to the
lower sign in (41) and±n = |n|, we combine (41) with (40) and obtain

n

S
= 〈x〉 = ±Q− d ∓ a2

4Q
[1+Q−2(1− d2)] (42)

and thus

±n
S
= |n|

S
= Q− sgn(n)d − a2

4Q
[1+Q−2(1− d2)]. (43)

We now rewrite this in a form that is apt to iteration,

Q = Q0+ a2

4Q
[1+Q−2(1− d2)] Q0 = |n|

S
+ sgn(n)d. (44)

To obtainQ to second order ina, we iterate once,

Q = Q0+ a2

4Q0
[1+Q−2

0 (1− d2)]. (45)

For δ = d = 0 we recover (33). Squaring (45), dropping terms of ordera4 and taking
advantage of (38) we obtain

�n ≡ En/h̄ = −n20 − nδ − α2

80

[
S2+ n2+ nδ/0
(n+ δ/20)2

]
+O(a40S2). (46)

Plainly, this is identical with (34) forδ = d = 0. On the other hand, second-order
perturbation theory gives

E(2)n /h̄ = −n20 − nδ − α2

80

[
S(S + 1)+ n2+ nδ/0
(n+ δ/20)2− 1/4

]
(47)

see also [14]. The above expression agrees with equation (35) whenδ vanishes, and
with (46) whenevern andS are sufficiently large anda � 1. The latter condition is quite
reasonable since we have used quantum-mechanical perturbation theory and, thus, compared
the ‘perturbation’−αSx with the ‘rest’, namely,−γ S2

z − δSz.
Once we know the semiclassical energiesEn, we can tuneδ so as to get semiclassical

resonanceEm = En for somem 6= n. Despite being obtained forα = 0, the resonance
condition (3) remains valid forα 6= 0 as well. Both (46) and (47) depend onn through
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the expressionn2 + nδ/0. Therefore (3) directly impliesEm = En for each couple{m, n}
satisfyingm+ n = −k = −δ/0.

A closer inspection shows that (3) implies degeneracy, toany order, of semiclassical
eigenvalues. To see why, we return to equation (39). Let us start by averaging it, namely,

n

S
= −d ±Q

〈(
1− 2ε

√
1− x2

)1/2
〉
. (48)

We now addd on the right and on the left, multiply both sides byS, and square the result
so as to find

n2+ nδ/0 = −(δ/20)2+
[
SQ

〈(
1− 2ε

√
1− x2

)1/2
〉]2

. (49)

The right-hand side does not show anyn-dependence. It is obtained by takingx as a
solution to the fourth-order equation (39), depending onE, α, δ, 0, andφ. After integration
with respect toφ, we are left with (49), an implicit equation forE. Solving it for E, the
solutionE = En will depend onn through the combinationn2 + nδ/0, as it shows up in
(49). HenceEm = En wheneverm2+mδ/0 = n2+ nδ/0.

5. Extensions

The extension of the above results to half-integer spins is straightforward. All that we
have to do is to interpretem and n as half-integers whenever they refer to eigenvalues
of Sz. In particular,m and n are half-integers in the resonance condition (3)–(5) and in
the quantization condition (24), (25), and the semiclassical eigenvalues are also labelled by
half-integers. At semiclassical resonanceδ/0 is still an integer.

The case when in the HamiltonianSx is replaced bySlx with l > 1 brings nothing new, if
l is an odd integer. For positive integerl semiclassical quantization is essentially unchanged.
In the definition (38) ofε, cosφ is replaced by cosl φ and in equations (39), (48) and (49)

(
√

1− x2l ) is substituted for
√

1− x2. The upshot is that the semiclassical eigenvalues still
depend onn through the expressionn2+ nδ/0 and therefore (3) still impliesE(sc)

m = E(sc)
n .

If l is odd, spin tunnelling splits the semiclassical degeneracy.
For evenl, however, the meaning of equations (3)–(5) changes. Depending on the

parity of k, (5) may refer to resonance or to true degeneracy. Let us recall that (3) gives
the condition for degeneracy whenα = 0. In the case of integer spins, ifk is odd then
n−m = −k − 2m is odd for eachm andn such thatm+ n = −k. As a consequence, the
αSlx term does not split the degeneracy of all these level pairs. In the case of half-integer
spins the same happens ifk is even. ThereforeEm = En holds for the true eigenvalues,
even if notexactlyat, but only very close to, the fieldδ = k0 at whichE(sc)

m = E(sc)
n .

An explanation of this generalized Kramers degeneracy can be found in section 8 of [9],
but for the reader’s convenience we repeat the argument here. We write the matrix ofH (for
l even) in the basis of theSz-eigenvectors|n〉. By noticing that〈m|H|n〉 = 0 whenevern−m
is odd, we can permute the elements of the basis so as to transform the matrix into a block-
diagonal form containing two blocks: the first is formed withn = −S,−S+2,−S+4, . . . ,
the second withn = −S+1,−S+3,−S+5, . . . . Both can be diagonalized independently,
so the von Neumann–Wigner argument [11] about the avoided level crossing does not apply.

For a degenerate energy level there is no tunnelling. That is to say, a left-localized
initial state remains approximately left-localized during time evolution. The reason is that
in the corresponding two-dimensional eigensubspace of the Hamiltonian there exists an
approximately left-localized state which is dominant in the eigenfunction expansion of the
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initial state. Therefore, if in an experimental situation the tranverse anisotropy fields are
a combination of even powers only, measurementsà la [1, 2] of the quantum decay of
magnetization in an increasing longitudinal external magnetic field would ideally yield a
fast decay (a step), only whenδ/0 passes every other integer value. In other words,
every second (expected) step would be missing. Unfortunately, an experiment in an applied
magnetic field usually has a transverse component that induces steps at the remaining integer
values.

6. Discussion

We have defined semiclassical resonance to be the degeneracyEm = En for energy levels as
they follow from semiclassical quantization. The ensuing level splitting is a purely quantum-
mechanical phenomenon. Both can be handled straightforwardly by the WKB formalism
[7–9]. The resonance experiments as set up for spin tunnelling in Mn12 acetate [1–4] and
Fe8 magnetic crystals [15] are both elegant and quite promising since they provide a detailed
test of the physics of spin quantum tunnelling and the crossover from the regime of thermal
activation to that of quantum behaviour. This paper’s considerations on tunnelling resonance
are valid, if the temperature is low enough; say [5, 6] below 1 K in the Mn12 case.

If so, one could apply semiclassical quantization section 3 to arbitrary numerical
precision but the amount of insight thus obtained is fairly restricted. We have chosen
a different way out and derived an explicit expression for the energy levels and, hence,
for semiclassical resonance through an external field−δSz under the assumption that
α/(20SQ2) � 1 whereQ2 = (δ2/4 − γE)/(0S)2 is dimensionless; cf (38). For the
ground state of Mn12 with S = 10, we haveQ ≈ 1 and the considerations apply. In fact,
we have also derived the energy levels forδ = 0 under slightly less restrictive conditions
and found that the shift of the ground state energy is well-predicted by−α2/40. In some
resonance experiments one would like to focus on states withm andn closer to zero since, in
resonance, the tunnelling frequency is much higher. As a consequence, the aforementioned
assumption may, but need not, hold. It mainly depends onQ2. If E ≈ −n2h̄0, then
Q2 ≈ (n/S)2 and it is the smaller the closern is to 0.

Wheneverδ is tuned to the degeneracy of some energy levels of the Hamiltonian
H0 = −γ S2

z − δSz, this degeneracy is not lifted by semiclassical quantization of the system
with α 6= 0. Only quantum mechanics lifts it, and only in high orders ofα/0S. At first
sight rather surprisingly—but at a first sight only (section 2)—the mathematics underlying
tunnelling forδ 6= 0, when the Hamiltonian’s symmetry of a rotation throughπ about the
Sx axis is broken, is identical to that of the caseδ = 0. That is to say, the very same
formalism, whether WKB or otherwise, can be applied to both cases.
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Appendix A. Semiclassical quantization forδ = 0

We have to integratex = cosθ relative toφ, i.e. average the expression{. . .}1/2 in (29) and
below,

x± = ±Q{1− 2ε2Q2+ 2ε[1−Q2+ ε2Q4]1/2}1/2 (50)

whereε = Q−2a cosφ. For δ = 0, there are two disjoint classical orbits onceE < −ασ .
Exactly in this energy range one finds{. . .} > 0 so that taking the square root in (50) is
well-defined. For the moment we suppose thata and thusε is small enough to perform a
series expansion of the outer square root. It is of the form

(1− 2y)1/2 = 1−
∑
n>1

bny
n where bn = (2n− 3)!!

n!
. (51)

The series converges for|y| < 1
2 while b1 = 1, b2 = b3 = 1

2. Introducing the shorthand
r = [1−Q2+ (εQ2)2]1/2 we see that we have to average

{1− 2ε(εQ2− r)}1/2 = 1−
∑
n>1

bnε
n(εQ2− r)n. (52)

We now concentrate on the series, insert the definition ofε and apply the binomial theorem
to (52) so as to find∑

n>1

n∑
m=0

bnQ
−2nam+n(−1)n−m

(
n

m

)
rn−m cosm+n φ. (53)

At this point we observe thatr depends onφ through cos2 φ. Hence,〈g(r) cos` φ〉 vanishes
for ` odd, whatever the functiong may be. Thus, when averaging (53), only terms with
` = m + n even will survive. For these termsn − m = (n + m) − 2m is also even and
we can apply the binomial theorem torn−m as well. Furthermore, averaging a cosine is
equivalent to a contour integration over the unit circle C1 in the complexz plane,

〈cos` φ〉 = 2−`

2π i

∮
C1

dz

z
(z+ z−1)` = 2−`

(
`

`/2

)
. (54)

Finally, we are left with

〈cosθ〉 = ±Q
[

1−
∑
n>1

n∑
m=0

(n−m)/2∑
l=0

bnQ
−2n(1−Q2)

n−m
2 −l

×
(a

2

)2l+m+n (n
m

)( 1
2(n−m)

l

)(
2l +m+ n
l + 1

2(m+ n)
)]

≡ ±Q
[

1−
∞∑
k=1

Ck(Q2)
(a

2

)2k
]

(55)

where it is understood thatm + n is even. If it were not because of the third binomial
coefficient in (55) we could directly resum the series. In the style of Borel [16, 17],
however, we could, by notingn! = 0(n+ 1) and taking an Eulerian integral representation
of the second kind [18, 19] for the Gamma function in conjunction with Hankel’s contour
integral [18, 19] for its inverse,

1

0(t)
= i

2π

∫
C2

dz

z
e−z(−z)−t (56)
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where C2 is a counter-clockwise infinite contour around the positive real axis. We will not
pursue this idea here. Collecting terms of ordera2 we find C1 = Q−2 +Q−4 and arrive at
(31), as shown.

How good is all this? Since we interchange the series (51) and averaging, namely,∮
dz . . . , we have to prove uniform convergence of the series and thus, in view of (51),

uniform boundedness ofy = ε(εQ2 − r) as cosφ varies between 1 and−1. The upshot
appears in (55). Plainly, the series in (55) is convergent fora small enough so that, for a
given a, Q and, thus, the energy has to stay away from zero. The series in (55) certainly
diverges at energies for which the two classical orbits merge into a single one. One can
handle divergent series through, e.g. Borel summation [16, 17] as above, but this is not the
topic of this paper.

Appendix B. Quantizing to second order inε

In this appendix we considerε as a ‘small’ parameter and sketch how one can perform
semiclassical quantization up to second order inε. As we will see, the method can
be generalized and the considerations of appendix A concerning the validity of the
approximations involved apply here as well.

We denote the two branchesx± of (39), namely,

x = −d ±Q
[
1− 2ε

√
1− x2

]1/2
(57)

simply by x. Keeping in mind thatx = cosθ depends onφ, we fix φ for the moment and
study x’s dependence uponε = aQ−2 cosφ. In view of (57) it is clear thatx = x(ε) is
analytic in a neighbourhood ofε = 0. Defining thenth partial ‘Taylor sum’ ofx(ε) to be

xn =
n∑
k=0

x(k)(0)

k!
εk ≡

n∑
k=0

[x]kε
k (58)

with x0 = x(0) = −d ±Q, using (51), and expanding the outer square root of (57), we can
rewrite (57) in the form

x = x0∓Q
∑
n>1

bnε
n(1− x2)n/2. (59)

Up to and including terms of order two we then find

x = x0∓Q[ε(1− x2)1/2+ ε2(1− x2)/2]+O(ε3) (60)

whence

x1 = x0∓Q(1− x2
0)

1/2ε = x0+ [x]1ε (61)

because
√

1− x2 =
√

1− x2
0 +O(ε).

In order to obtainx2, we observe that (60) implies

[x]2 = ∓Q
{[√

1− x2
]

1
+ [1− x2]0/2

}
. (62)

In analogy to (58), we have used the notation [f ]n = f (n)(0)/n!.
As for the entries of (61), a simple calculation gives[√

1− x2
]

1
= d
√

1− x2

dε

∣∣∣∣
ε=0

= −x0(1− x2
0)
−1/2x ′(0)

= −x0(1− x2
0)
−1/2[x]1 = ±Qx0. (63)
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Since [1− x2]0 = 1− x2
0 we end up with

x2 = x1+ [x]2ε
2 = x0∓Qε

√
1− x2

0 −Qε2[Qx0± (1− x2
0)/2]. (64)

It is x2 that is to be averaged with respect toφ. Inserting〈ε〉 = 0 and〈ε2〉 = a2/2Q4 into
〈x2〉 we obtain equation (40).
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